Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Front Microbiol ; 14: 1158163, 2023.
Article in English | MEDLINE | ID: covidwho-2305516

ABSTRACT

Introduction: The ongoing 2019 coronavirus disease pandemic (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its variants, is a global public health threat. Early diagnosis and identification of SARS-CoV-2 and its variants plays a critical role in COVID-19 prevention and control. Currently, the most widely used technique to detect SARS-CoV-2 is quantitative reverse transcription real-time quantitative PCR (RT-qPCR), which takes nearly 1 hour and should be performed by experienced personnel to ensure the accuracy of results. Therefore, the development of a nucleic acid detection kit with higher sensitivity, faster detection and greater accuracy is important. Methods: Here, we optimized the system components and reaction conditions of our previous detection approach by using RT-RAA and Cas12b. Results: We developed a Cas12b-assisted one-pot detection platform (CDetection.v2) that allows rapid detection of SARS-CoV-2 in 30 minutes. This platform was able to detect up to 5,000 copies/ml of SARS-CoV-2 without cross-reactivity with other viruses. Moreover, the sensitivity of this CRISPR system was comparable to that of RT-qPCR when tested on 120 clinical samples. Discussion: The CDetection.v2 provides a novel one-pot detection approach based on the integration of RT-RAA and CRISPR/Cas12b for detecting SARS-CoV-2 and screening of large-scale clinical samples, offering a more efficient strategy for detecting various types of viruses.

2.
36th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2023 ; 2023-January:433-436, 2023.
Article in English | Scopus | ID: covidwho-2273127

ABSTRACT

We have designed, fabricated, and tested a MEMS-based impedance biosensor for accurate and rapid detection of severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) using of clinical samples. The device consists of focusing region that concentrate low quantities of the virus present in the samples to a detectable threshold, trap region hat maximize the captured virus, and detection region to detect the virus with high selectivity and sensitivity, using an array of interdigitated electrodes (IDE) coated with a specific antibody. Changes in the impedance value due to the binding of the SARS-COV-2 antigen to the antibody will indicate positive or negative result. The device was able to detect inactivated SARS-COV-2 antigen present in phosphate buffer saline (PBS) with a concentration as low as 50 TCID50/ml in 30 minutes. In addition, the biosensor was able to detect SARS-COV-2 in clinical samples (swabs) with a sensitivity of 84 TCID50/ml, also in 30 minutes. © 2023 IEEE.

3.
Sens Actuators B Chem ; 371: 132539, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2267149

ABSTRACT

In every pandemic, it is critical to test as many people as possible and keep track of the number of new cases of infection. Therefore, there is a need for novel, fast and unambiguous testing methods. In this study, we designed a sandwich-type voltammetric immunosensor based on unlabeled- and labeled with a redox probe antibodies against virus spike protein for fast and ultrasensitive detection of SARS-CoV-2. The process of the preparation of the sensor layer included chemisorption of cysteamine layer and covalent anchoring of antibody specific for the S1 subunit of the S protein. The source of the voltametric signal was the antibody labeled with the redox probe, which was introduced onto biosensor surface only after the recognition of the virus. This easy-to-handle immunosensor was characterized by a wide analytical range (2.0·10-7 to 0.20 mg·L-1) and low detection limit (8.0·10-8 mg·L-1 ≡ 0.08 pg·mL-1 ≡ 4 virions·µL-1). The utility of the designed device was also evidenced by the detection of SARS-CoV-2 in the clinical samples. Moreover, the main advantage and a huge novelty of the developed device, compared to those already existing, is the moment of generating the analytical signal of the redox probe that appears only after the virus recognition. Thus, our diagnostic innovation may considerably contribute to controlling the COVID-19 pandemic. The as-developed immunosensor may well offer a novel alternative approach for viral detection that could complement or even replace the existing methods.

4.
Springer Protocols Handbooks ; : 121-130, 2022.
Article in English | EMBASE | ID: covidwho-2173507

ABSTRACT

Avian infectious bronchitis virus (IBV), a chicken Gammacoronavirus, is a major poultry pathogen, and is probably endemic in all regions with intensive poultry production. Since IBV was first described in 1936, many serotypes and variants of IBV have been isolated worldwide. IBV isolates are capable of infecting a large range of epithelial surfaces of the chicken, involving the respiratory, renal, and reproductive systems;however, the clinical signs are usually not specific for differential diagnoses. Virus isolation is commonly used for diagnosis of IBV infection, which was achieved through passage of clinical materials via the allantoic route of embryos. Currently, more sensitive molecular approaches for the detection of avian pathogens have been developed, including reverse-transcriptase polymerase chain reaction (RT-PCR) and real-time RT-PCR, which are more suitable for use in diagnostic laboratories. In this chapter, we describe a one-step RT-PCR which can be used for detecting most of IBV serotypes in the IBV-infected allantoic fluid and has been used routinely in our laboratories for detection of IBVs. Copyright © Springer Science+Business Media New York 2016.

5.
Sci Total Environ ; 858(Pt 3): 159350, 2023 Feb 01.
Article in English | MEDLINE | ID: covidwho-2069671

ABSTRACT

Wastewater based epidemiology (WBE) is an important tool to fight against COVID-19 as it provides insights into the health status of the targeted population from a small single house to a large municipality in a cost-effective, rapid, and non-invasive way. The implementation of wastewater based surveillance (WBS) could reduce the burden on the public health system, management of pandemics, help to make informed decisions, and protect public health. In this study, a house with COVID-19 patients was targeted for monitoring the prevalence of SARS-CoV-2 genetic markers in wastewater samples (WS) with clinical specimens (CS) for a period of 30 days. RT-qPCR technique was employed to target nonstructural (ORF1ab) and structural-nucleocapsid (N) protein genes of SARS-CoV-2, according to a validated experimental protocol. Physiological, environmental, and biological parameters were also measured following the American Public Health Association (APHA) standard protocols. SARS-CoV-2 viral shedding in wastewater peaked when the highest number of COVID-19 cases were clinically diagnosed. Throughout the study period, 7450 to 23,000 gene copies/1000 mL were detected, where we identified 47 % (57/120) positive samples from WS and 35 % (128/360) from CS. When the COVID-19 patient number was the lowest (2), the highest CT value (39.4; i.e., lowest copy number) was identified from WS. On the other hand, when the COVID-19 patients were the highest (6), the lowest CT value (25.2 i.e., highest copy numbers) was obtained from WS. An advance signal of increased SARS-CoV-2 viral load from the COVID-19 patient was found in WS earlier than in the CS. Using customized primer sets in a traditional PCR approach, we confirmed that all SARS-CoV-2 variants identified in both CS and WS were Delta variants (B.1.617.2). To our knowledge, this is the first follow-up study to determine a temporal relationship between COVID-19 patients and their discharge of SARS-CoV-2 RNA genetic markers in wastewater from a single house including all family members for clinical sampling from a developing country (Bangladesh), where a proper sewage system is lacking. The salient findings of the study indicate that monitoring the genetic markers of the SARS-CoV-2 virus in wastewater could identify COVID-19 cases, which reduces the burden on the public health system during COVID-19 pandemics.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Follow-Up Studies , Wastewater , Genetic Markers , RNA, Viral
6.
25th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2021 ; : 935-936, 2021.
Article in English | Scopus | ID: covidwho-2012751

ABSTRACT

The requirement for diversification of methods for sample preparation of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is increasingly important to circumvent analysis bottlenecks and continue widespread surveillance testing. We report a centrifugally-driven microfluidic platform for automated affinity nanoparticle enrichment and enzymatic RNA extraction of SARS-CoV-2. The microfluidic disc (μCD) and accompanying mechatronic system(s) are capable of sample preparation from up to six patient samples simultaneously and under 20 minutes. © 2021 MicroTAS 2021 - 25th International Conference on Miniaturized Systems for Chemistry and Life Sciences. All rights reserved.

7.
25th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2021 ; : 739-740, 2021.
Article in English | Scopus | ID: covidwho-2012740

ABSTRACT

As the SARS-CoV-2 virus continues to mutate, global eradication of infections is unlikely, and COVID-19 is predicted to become a seasonal or endemic disease like influenza. Widespread detection of variant strains will be critical to inform policy decisions to mitigate further spread, and post-pandemic multiplexed screening of respiratory viruses will be necessary to properly manage patients presenting with similar respiratory symptoms. We have developed a portable, magnetofluidic platform for multiplexed PCR testing in <30 min. Cartridges were designed for multiplexed detection of SARS-CoV-2 with either distinctive variant mutations or with Influenza A and B and tested with clinical samples. © 2021 MicroTAS 2021 - 25th International Conference on Miniaturized Systems for Chemistry and Life Sciences. All rights reserved.

8.
Diagnostics (Basel) ; 12(5)2022 May 19.
Article in English | MEDLINE | ID: covidwho-1928513

ABSTRACT

The COVID-19 pandemic has unveiled a pressing need to expand the diagnostic landscape to permit high-volume testing in peak demand. Rapid nucleic acid testing based on isothermal amplification is a viable alternative to real-time reverse transcription polymerase chain reaction (RT-PCR) and can help close this gap. With the emergence of SARS-CoV-2 variants of concern, clinical validation of rapid molecular tests needs to demonstrate their ability to detect known variants, an essential requirement for a robust pan-SARS-CoV-2 assay. To date, there has been no clinical validation of reverse transcription recombinase polymerase amplification (RT-RPA) assays for SARS-CoV-2 variants. We performed a clinical validation of a one-pot multi-gene RT-RPA assay with the E and RdRP genes of SARS-CoV-2 as targets. The assay was validated with 91 nasopharyngeal samples, with a full range of viral loads, collected at University College London Hospitals. Moreover, the assay was tested with previously sequenced clinical samples, including eleven lineages of SARS-CoV-2. The rapid (20 min) RT-RPA assay showed high sensitivity and specificity, equal to 96% and 97%, respectively, compared to gold standard real-time RT-PCR. The assay did not show cross-reactivity with the panel of respiratory pathogens tested. We also report on a semi-quantitative analysis of the RT-RPA results with correlation to viral load equivalents. Furthermore, the assay could detect all eleven SARS-CoV-2 lineages tested, including four variants of concern (Alpha, Beta, Delta, and Omicron). This variant-proof SARS-CoV-2 assay offers a significantly faster and simpler alternative to RT-PCR, delivering sensitive and specific results with clinical samples.

9.
ACS Appl Mater Interfaces ; 2022 May 31.
Article in English | MEDLINE | ID: covidwho-1873401

ABSTRACT

Monitoring the human immune response by assaying (detection and quantification) the antibody level against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is important in conducting epidemiological surveillance and immunization studies at a population level. Herein, we present the design and fabrication of a solid-state nanoplasmonic biosensing platform that is capable of quantifying SARS-CoV-2 neutralizing antibody IgG with a limit of detection as low as 30.0 attomolar (aM) and a wide dynamic range spanning seven orders of magnitude. Based on IgG binding constant determination for different biological motifs, we show that the covalent attachment of highly specific SARS-CoV-2 linear epitopes with an appropriate ratio, in contrast to using SARS-CoV-2 spike protein subunits as receptor molecules, to gold triangular nanoprisms (Au TNPs) results in a construction of a highly selective and more sensitive, label-free IgG biosensor. The biosensing platform displays specificity against other human antibodies and no cross reactivity against MERS-CoV antibodies. Furthermore, the nanoplasmonic biosensing platform can be assembled in a multi-well plate format to translate to a high-throughput assay that allowed us to conduct SARS-CoV-2 IgG assays of COVID-19 positive patient (n = 121) and healthy individual (n = 65) plasma samples. Most importantly, performing a blind test in an additional cohort of 30 patient plasma samples, our nanoplasmonic biosensing platform successfully identified COVID-19 positive samples with 90% specificity and 100% sensitivity. Very recent studies show that our selected epitopes are conserved in the highly mutated SARS-CoV-2 variant "Omicron"; therefore, the demonstrated high-throughput nanoplasmonic biosensing platform holds great promise for a highly specific serological assay for conducting large-scale COVID-19 testing and epidemiological studies and monitoring the immune response and durability of immunity as part of the global immunization programs.

10.
mSphere ; 7(3): e0091321, 2022 06 29.
Article in English | MEDLINE | ID: covidwho-1832362

ABSTRACT

New variants of SARS-CoV-2 are continuing to emerge and dominate the global sequence landscapes. Several variants have been labeled variants of concern (VOCs) because they may have a transmission advantage, increased risk of morbidity and/or mortality, or immune evasion upon a background of prior infection or vaccination. Placing the VOCs in context with the underlying variability of SARS-CoV-2 is essential in understanding virus evolution and selection pressures. Dominant genome sequences and the population genetics of SARS-CoV-2 in nasopharyngeal swabs from hospitalized patients were characterized. Nonsynonymous changes at a minor variant level were identified. These populations were generally preserved when isolates were amplified in cell culture. To place the Alpha, Beta, Delta, and Omicron VOCs in context, their growth was compared to clinical isolates of different lineages from earlier in the pandemic. The data indicated that the growth in cell culture of the Beta variant was more than that of the other variants in Vero E6 cells but not in hACE2-A549 cells. Looking at each time point, Beta grew more than the other VOCs in hACE2-A549 cells at 24 to 48 h postinfection. At 72 h postinfection there was no difference in the growth of any of the variants in either cell line. Overall, this work suggested that exploring the biology of SARS-CoV-2 is complicated by population dynamics and that these need to be considered with new variants. In the context of variation seen in other coronaviruses, the variants currently observed for SARS-CoV-2 are very similar in terms of their clinical spectrum of disease. IMPORTANCE SARS-CoV-2 is the causative agent of COVID-19. The virus has spread across the planet, causing a global pandemic. In common with other coronaviruses, SARS-CoV-2 genomes can become quite diverse as a consequence of replicating inside cells. This has given rise to multiple variants from the original virus that infected humans. These variants may have different properties and in the context of a widespread vaccination program may render vaccines less effective. Our research confirms the degree of genetic diversity of SARS-CoV-2 in patients. By comparing the growth of previous variants to the pattern seen with four variants of concern (VOCs) (Alpha, Beta, Delta, and Omicron), we show that, at least in cells, Beta variant growth exceeds that of Alpha, Delta, and Omicron VOCs at 24 to 48 h in both Vero E6 and hACE2-A549 cells, but by 72 h postinfection, the amount of virus is not different from that of the other VOCs.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , Phenotype , SARS-CoV-2/genetics
11.
Viruses ; 14(5)2022 04 22.
Article in English | MEDLINE | ID: covidwho-1810321

ABSTRACT

The public health crisis caused by the emergence of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in 2019 has drastically changed our lifestyle in virtually all contexts around the world. SARS-CoV-2 is mainly airborne, transmitted by the salivary droplets produced when infected people cough or sneeze. In addition, diarrhea symptoms and the detection of SARS-CoV-2 in feces suggest a fecal-oral route of contagion. Currently, the high demand for SARS-CoV-2 diagnosis has surpassed the availability of PCR and immunodetection probes and has prompted the development of other diagnostic alternatives. In this context, mass spectrometry (MS) represents a mature, robust alternative platform for detection of SARS-CoV-2 and other human viruses. This possibility has raised great interest worldwide. Therefore, it is time for the global application of MS as a feasible option for detecting SARS-CoV-2, not only in human fluids, but also in other matrices such as foods and wastewater. This review covers the most relevant established methods for MS-based SARS-CoV-2 detection and discusses the future application of these tools in different matrices. Significance: The Coronavirus Disease 2019 (COVID-19) pandemic highlighted the pros and cons of currently available PCR and immunodetection tools. The great concern over the infective potential of SARS-CoV-2 viral particles that can persist for several hours on different surfaces under various conditions further evidenced the need for reliable alternatives and high-throughput methods to meet the needs for mass detection of SARS-CoV-2. In this context, MS-based proteomics emerging from fundamental studies in life science can offer a robust option for SARS-CoV-2 detection in human fluids and other matrices. In addition, the substantial efforts towards detecting SARS-CoV-2 in clinal samples, position MS to support the detection of this virus in different matrices such as the surfaces of the packing food process, frozen foods, and wastewaters. Proteomics and mass spectrometry are, therefore, well positioned to play a role in the epidemiological control of COVID-19 and other future diseases. We are currently witnessing the opportunity to generate technologies to overcome prolonged pandemics for the first time in human history.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , Mass Spectrometry , Polymerase Chain Reaction , SARS-CoV-2/genetics
12.
PNAS Nexus ; 1(1): pgac028, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1806566

ABSTRACT

Saliva specimens have drawn interest for diagnosing respiratory viral infections due to their ease of collection and decreased risk to healthcare providers. However, rapid and sensitive immunoassays have not yet been satisfactorily demonstrated for such specimens due to their viscosity and low viral loads. Using paper microfluidic chips and a smartphone-based fluorescence microscope, we developed a highly sensitive, low-cost immunofluorescence particulometric SARS-CoV-2 assay from clinical saline gargle samples. We demonstrated the limit of detection of 10 ag/µL. With easy-to-collect saline gargle samples, our clinical sensitivity, specificity, and accuracy were 100%, 86%, and 93%, respectively, for n = 27 human subjects with n = 13 RT-qPCR positives.

13.
J Virol Methods ; 300: 114423, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1654873

ABSTRACT

Since the pandemic occurred due to the emergence of SARS-CoV-2, there has always been a demand for a simple and sensitive diagnostic kit for detection of SARS-Cov-2 infection. In January 2020, WHO approved the Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) for detecting the presence of Covid-19 genetic material in individuals. Till date many diagnostic kits have arrived in the market for quantification of SARS-CoV-2 antibodies. In spite of being the gold standard method of Covid-19 detection, there are some drawbacks associated with RT-PCR which leads to false-negative results. Hence, in order to fulfil the need for an antibody testing kit for evaluating seroconversion and immunity acquisition in the population, an efficient, highly specific and sensitive assay, Chimera Soochak, an enzyme-linked immunoassay (ELISA) Kit has been developed. It works on the principle of detecting IgG antibodies developed specifically against the S1-RBD by employing a recombinant strain of S1-RBD produced in the HEK293 cell line. The developed kit was validated using different modes and methods to attain the utmost confidence on the samples collected from patients. The validation methodology included, validation with known samples, blind study, third-party validation, validation using WHO Reference Panel and comparison with FDA approved Surrogate virus neutralization kit. The kit was found successful in detecting IgG against the S1-RBD of SARS-CoV-2. The kit had been validated on multiple parameters. A total of 900 samples had been tested by using this kit and it has exhibited the sensitivity, specificity and accuracy for all the above-mentioned parameters.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , HEK293 Cells , Humans , Sensitivity and Specificity
14.
Anal Bioanal Chem ; 414(5): 1949-1962, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1607761

ABSTRACT

Recently, numerous diagnostic approaches from different disciplines have been developed for SARS-CoV-2 diagnosis to monitor and control the COVID-19 pandemic. These include MS-based assays, which provide analytical information on viral proteins. However, their sensitivity is limited, estimated to be 5 × 104 PFU/ml in clinical samples. Here, we present a reliable, specific, and rapid method for the identification of SARS-CoV-2 from nasopharyngeal (NP) specimens, which combines virus capture followed by LC-MS/MS(MRM) analysis of unique peptide markers. The capture of SARS-CoV-2 from the challenging matrix, prior to its tryptic digestion, was accomplished by magnetic beads coated with polyclonal IgG-α-SARS-CoV-2 antibodies, enabling sample concentration while significantly reducing background noise interrupting with LC-MS analysis. A sensitive and specific LC-MS/MS(MRM) analysis method was developed for the identification of selected tryptic peptide markers. The combined assay, which resulted in S/N ratio enhancement, achieved an improved sensitivity of more than 10-fold compared with previously described MS methods. The assay was validated in 29 naive NP specimens, 19 samples were spiked with SARS-CoV-2 and 10 were used as negative controls. Finally, the assay was successfully applied to clinical NP samples (n = 26) pre-determined as either positive or negative by RT-qPCR. This work describes for the first time a combined approach for immuno-magnetic viral isolation coupled with MS analysis. This method is highly reliable, specific, and sensitive; thus, it may potentially serve as a complementary assay to RT-qPCR, the gold standard test. This methodology can be applied to other viruses as well.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Chromatography, Liquid/methods , Immunomagnetic Separation/methods , SARS-CoV-2/genetics , Tandem Mass Spectrometry/methods , Amino Acid Sequence , Antibodies, Viral/chemistry , Biomarkers/chemistry , COVID-19/immunology , COVID-19/virology , COVID-19 Testing/instrumentation , COVID-19 Testing/standards , Chromatography, Liquid/instrumentation , Chromatography, Liquid/standards , Humans , Immunomagnetic Separation/instrumentation , Immunomagnetic Separation/standards , Nasopharynx/virology , Peptides/chemistry , Peptides/immunology , SARS-CoV-2/immunology , Sensitivity and Specificity , Tandem Mass Spectrometry/instrumentation , Tandem Mass Spectrometry/standards
15.
ACS Appl Mater Interfaces ; 14(2): 2501-2509, 2022 Jan 19.
Article in English | MEDLINE | ID: covidwho-1605760

ABSTRACT

Rapid serology platforms are essential in disease pandemics for a variety of applications, including epidemiological surveillance, contact tracing, vaccination monitoring, and primary diagnosis in resource-limited areas. Laboratory-based enzyme-linked immunosorbent assay (ELISA) platforms are inherently multistep processes that require trained personnel and are of relatively limited throughput. As an alternative, agglutination-based systems have been developed; however, they rely on donor red blood cells and are not yet available for high-throughput screening. Column agglutination tests are a mainstay of pretransfusion blood typing and can be performed at a range of scales, ranging from manual through to fully automated testing. Here, we describe a column agglutination test using colored microbeads coated with recombinant SARS-CoV-2 spike protein that agglutinates when incubated with serum samples collected from patients recently infected with SARS-CoV-2. After confirming specific agglutination, we optimized centrifugal force and time to distinguish samples from uninfected vs SARS-CoV-2-infected individuals and then showed concordant results against ELISA for 22 clinical samples, and also a set of serial bleeds from one donor at days 6-10 postinfection. Our study demonstrates the use of a simple, scalable, and rapid diagnostic platform that can be tailored to detect antibodies raised against SARS-CoV-2 and can be easily integrated with established laboratory frameworks worldwide.


Subject(s)
Agglutination Tests/methods , Antibodies, Viral/immunology , COVID-19 Serological Testing/methods , Diagnostic Tests, Routine/methods , Recombinant Proteins/immunology , Spike Glycoprotein, Coronavirus/immunology , Early Diagnosis , Humans , Sensitivity and Specificity
16.
ACS Sens ; 6(12): 4461-4470, 2021 12 24.
Article in English | MEDLINE | ID: covidwho-1560076

ABSTRACT

The rapid and unexpected spread of SARS-CoV-2 worldwide has caused unprecedented disruption to daily life and has brought forward critical challenges for public health. The disease was the largest cause of death in the United States in early 2021. Likewise, the COVID-19 pandemic has highlighted the need for rapid and accurate diagnoses at scales larger than ever before. To improve the availability of current gold standard diagnostic testing methods, the development of point-of-care devices that can maintain gold standard sensitivity while reducing the cost and providing portability is much needed. In this work, we combine the amplification capabilities of reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) techniques with high-sensitivity end-point detection of crumpled graphene field-effect transistors (cgFETs) to develop a portable detection cell. This electrical detection method takes advantage of the ability of graphene to adsorb single-stranded DNA due to noncovalent π-π bonds but not double-stranded DNA. These devices have demonstrated the ability to detect the presence of the SARS-CoV-2 virus in a range from 10 to 104 copies/µL in 20 viral transport medium (VTM) clinical samples. As a result, we achieved 100% PPV, NPV, sensitivity, and specificity with 10 positive and 10 negative VTM clinical samples. Further, the cgFET devices can differentiate between positive and negative VTM clinical samples in 35 min based on the Dirac point shift. Likewise, the improved sensing capabilities of the crumpled gFET were compared with those of the traditional flat gFET devices.


Subject(s)
Biosensing Techniques , COVID-19 , Graphite , Humans , Pandemics , SARS-CoV-2 , Sensitivity and Specificity
17.
Biosensors (Basel) ; 11(12)2021 Nov 30.
Article in English | MEDLINE | ID: covidwho-1542418

ABSTRACT

Detection methods for monitoring infectious pathogens has never been more important given the need to contain the spread of the COVID-19 pandemic. Herein we propose a highly sensitive magnetic-focus-enhanced lateral flow assay (mLFA) for the detection of SARS-CoV-2. The proposed mLFA is simple and requires only lateral flow strips and a reusable magnet to detect very low concentrations of the virus particles. The magnetic focus enhancement is achieved by focusing the SARS-CoV-2 conjugated magnetic probes in the sample placed in the lateral flow (LF) strips for improved capture efficiency, while horseradish peroxidase (HRP) was used to catalyze the colorimetric reaction for the amplification of the colorimetric signal. With the magnetic focus enhancement and HRP-based amplification, the mLFA could yield a highly sensitive technology for the recognition of SARS-CoV-2. The developed methods could detect as low as 400 PFU/mL of SARS-CoV-2 in PBS buffer based on the visible blue dots on the LF strips. The mLFA could recognize 1200 PFU/mL of SARS-CoV-2 in saliva samples. With clinical nasal swab samples, the proposed mLFA could achieve 66.7% sensitivity and 100% specificity.


Subject(s)
COVID-19 Testing/methods , COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Magnetics , SARS-CoV-2/isolation & purification , Sensitivity and Specificity
18.
Transbound Emerg Dis ; 69(2): 189-194, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1450581

ABSTRACT

During the current COVID-19 pandemic, different methods have been used to evaluate patients with suspected SARS-CoV-2 infection. In this study, we experimentally evaluate the ability of spiked saliva-moist swabs and spiked swabs without any transport medium to retain SARS-CoV-2 for storage and transport at different environmental settings during different incubation time periods. Our results show that at ambient temperature of 20°C, SARS-CoV-2 RNA remains stable for up to 9 days allowing a long-time span for transport and storage without compromising clinical results. Additionally, this study demonstrates that saliva-moist swabs can also be stored at -20°C and +4°C for up to 26 days without affecting RT-qPCR results. Our data are relevant for low-and middle-income countries, which have limited access to rapid refrigerated transport and storage of samples representing an economical alternative. Finally, our study demonstrates the practical and economic advantage of using swabs without transport medium.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , COVID-19/veterinary , Pandemics , RNA Stability , RNA, Viral/genetics , SARS-CoV-2/genetics , Saliva/chemistry , Specimen Handling/methods , Specimen Handling/veterinary , Temperature
19.
Biosens Bioelectron ; 195: 113646, 2022 Jan 01.
Article in English | MEDLINE | ID: covidwho-1432988

ABSTRACT

The pandemic of coronavirus disease 2019 (COVID-19) resulted from novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a worldwide concern. It is imperative to develop rapid, sensitive, and specific biosensing methods. Herein, we developed a CRISPR-Cas12a powered visual biosensor with a smartphone readout for ultrasensitive and selective detection of SARS-CoV-2. Simply, the SARS-CoV-2 derived nucleic acids triggered CRISPR-Cas12a based indiscriminate degradation of a single-stranded DNA that was supposed to link two gold nanoparticles, inducing the dis-aggregation of gold nanoparticles and thus generating observable color changes. This change can be readily distinguished by naked eyes as well as a smartphone with a Color Picker App. The proposed biosensor was successfully applied to detect SARS-CoV-2 gene in synthetic vectors, transcribed RNA and SARS-CoV-2 pseudoviruses. It rendered "single copy resolution" as evidenced by the 1 copy/µL limit of detection of pseudoviruses with no cross-reactivity. When the developed biosensor was challenged with SARS-CoV-2 clinical bio-samples, it provided 100% agreement (both positive and negative) with qPCR results. The sample-to-result time was roughly 90 min. Our work provides a novel and robust technology for ultrasensitive detection of SARS-CoV-2 that could be used clinically.


Subject(s)
Biosensing Techniques , COVID-19 , Metal Nanoparticles , CRISPR-Cas Systems , Gold , Humans , Nucleic Acid Amplification Techniques , RNA, Viral/genetics , SARS-CoV-2 , Smartphone
20.
Microorganisms ; 9(7)2021 Jul 19.
Article in English | MEDLINE | ID: covidwho-1323311

ABSTRACT

A bioterror event using an infectious bacterium may lead to catastrophic outcomes involving morbidity and mortality as well as social and psychological stress. Moreover, a bioterror event using an antibiotic resistance engineered bacterial agent may raise additional concerns. Thus, preparedness is essential to preclude and control the dissemination of the bacterial agent as well as to appropriately and promptly treat potentially exposed individuals or patients. Rates of morbidity, death, and social anxiety can be drastically reduced if the rapid delivery of antimicrobial agents for post-exposure prophylaxis and treatment is initiated as soon as possible. Availability of rapid antibiotic susceptibility tests that may provide key recommendations to targeted antibiotic treatment is mandatory, yet, such tests are only at the development stage. In this review, we describe the recently published rapid antibiotic susceptibility tests implemented on bioterror bacterial agents and discuss their assimilation in clinical and environmental samples.

SELECTION OF CITATIONS
SEARCH DETAIL